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Vectorial solitary waves in optical media with a quadratic nonlinearity
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We search for self-trapped beams due to the vectorial interaction of two orthogonally polarized components
of a fundamental harmonic and a single component of the second harmonic in a quadratically nonlinear
medium. The basic set of equations for both the temporal and the spatial case is derived. The resulting
two-parameter family of solitary waves is investigated by means of a variational approximation and by direct
numerical methods. Several limiting cases and differences to the scalar interaction in quadratic media are
discussed. The propagation of stable solitary waves and mutual collisions are simulated and the decay of
unstable solitary waves is demonstrated. We predict an internal boundary in the soliton parameter space which
separates stable and unstable domains.@S1063-651X~97!06806-2#

PACS number~s!: 42.65.Tg, 42.65.Ky
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I. INTRODUCTION

For many decades solitons have attracted a great de
interest because of their robust, particlelike behavior. T
may be regarded as fundamental excitations of various n
linear systems in biology, chemistry, or physics. In partic
lar, the resonant as well as nonresonant interaction of l
with matter was shown to create an ideal environment
solitons to exist. Self-induced transparency solitons tra
without any losses through an ensemble of resonant t
level systems and collide without losing their stability@1#.
Instantaneous cubic~Kerr! nonlinearities which are based o
nonresonant effects may prevent the diffraction-induc
spreading of beams or dispersion-induced broadening
pulses. The evolution of the corresponding spatial and t
poral envelope solitons may be described by the nonlin
Schrödinger equation. Spatial solitons were found to exist
many transparent materials like fused silica@2#, semiconduc-
tors @3#, and liquids@4#. Particular emphasis was paid to th
investigation of the propagation of temporal solitons in fib
because of their potential use as a fundamental bits in h
bit-rate, long-haul signal-transmission systems@5,6#.

In recent years a renewed interest emerged regarding
dratic nonlinearities arising in noncentrosymmetric mater
like potassium titanyl phosphate~KTP!, lithium niobate
(LiNbO3), and poled polymers. Earlier investigations we
primarily concentrated on the efficient frequency convers
of the light field. Now two new issues are of interest. First
an alternative for using cubic nonlinearities in all-optic
switching schemes it was proposed to exploit phase and
plitude modulation of the fundamental harmonic genera
by consecutive up and down conversion.

Indeed, large nonlinearly induced phase shifts of the f
damental harmonic~FH! were observed in KTP crystals@7#,
in LiNbO3 channel waveguides@8#, and in phase matche
KTP waveguides@9,10#. In this context it may be anticipate
that novel all-optical operations can be implemented and
the required switching power can be reduced. Recently
validity of this scheme was demonstrated experimenta
551063-651X/97/55~6!/7704~8!/$10.00
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Large amplitude modulations of the FH were induced
varying the phase of the second harmonic~SH! @11#. Even
basic photonic components such as nonlinear directio
couplers@12# and Mach-Zehnder interferometers@13# based
on LiNbO3 channel waveguides were successfully operat

Secondly it was found that this phase modulation m
balance the dispersion-~diffraction-! induced pulse broaden
ing ~beam spreading!. As a consequence mutually trappe
solitary waves~SW! may be formed consisting of the funda
mental and second harmonics@14–28#. A one-parametric
family of solutions was numerically determined@20# with the
exception of one element which is known analytically@14#.
Both stable and unstable SWs were found and the co
sponding parameter ranges were identified@22,23#. Recently,
the collision of these SWs has been studied@24,25#. As could
be anticipated for a nonintegrable system, it was found t
the colliding SWs fuse for sufficiently small relative veloc
ties.

As a matter of fact, the existence of spatial bright SW
was experimentally demonstrated in planar LiNbO3
waveguides@26#. In comparison to cubic nonlinearities th
interaction of two waves evokes novel effects. A represen
tive example is the stable propagation of two-dimensio
self-guided beams in a KTP-bulk crystal@27,28# which con-
trasts the catastrophic self-focusing in a cubic nonlinear
Until now the interest was almost exclusively focused on
situation where one FH and SH component are involv
Obviously, the degrees of freedom of the dynamical syst
will increase if the number of interacting waves increas
This can be achieved by leaving the degenerated case
studying the three-wave parametric interaction@29# or by
exploiting the so-called type-II phase matching~vectorial in-
teraction! @30#. In the latter case two orthogonally polarize
FH components create a single SH field which is then do
converted to both FHs.

This type of interaction has already attracted a great d
of interest in situations where dispersion and diffraction c
be neglected@31–38#. The power imbalance between th
FHs represents an additional control parameter. It offers
7704 © 1997 The American Physical Society
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55 7705VECTORIAL SOLITARY WAVES IN OPTICAL MEDIA . . .
other opportunity to tune the nonlinear interaction and can
used to create novel effects which are based on ampli
and phase modulation. In particular, the nonlinearly indu
phase shift of every FH depends on this new degree of f
dom very sensitively@34,35#. A number of experiments wer
devoted to this subject. Nonlinearly induced polarization
tation was observed@37,38# and a transistorlike switching
behavior could be obtained@36#.

The aim of the present work is to include diffraction a
dispersion into the study of the vectorial interaction and
search for solitary-wave solutions. We restrict ourselves
the one-dimensional case which is relevant for self-guid
beams in planar waveguides or for pulses propagating
channel waveguides or fibers. The basic set of normali
equations likewise describes the situation of the nondege
ated parametric interaction. This case was studied in a re
paper@39#. Although it has been shown that the set of no
malized equations exhibits solitary-wave solutions, wh
were termed ‘‘three-wave bright spatial solitons,’’ th
‘‘physical’’ equations used in this work do not describe at
the propagation of light beams in a planar waveguide
claimed. Nevertheless the conclusions drawn from the
mal solutions are interesting and show that a two-parame
family of stationary localized solutions exists. Evident
SWs known from the scalar interaction appear in the limit
case of balanced excitation of both FHs. Moreover, it w
pointed out that in some particular cases one of the th
fields can be expressed by the two remaining ones. T
holds not only for the Schro¨dinger limit as it does for the
scalar interaction and large phase mismatch but also fo
extreme imbalance of the FH waves. But even in this cas
analytical solution exists only if both remaining fields a
equal. Hence in the present paper the main emphasis i
the analytical description of the vectorial SWs, and on
fects which are due to the vectorial nature of the interacti
on the stability, and on the collision behavior.

The paper is organized as follows. In Sec. II we derive
basic set of equations which describe both the propagatio
short pulses and narrow beams in quadratically nonlin
waveguides. We determine the respective integrals of
tion. In Sec. III we proceed with the variational approa
which gives a fully analytical description of the solitar
wave solution. We compare our analytical results with tho
obtained by a direct numerical integration and study the
namical behavior of the stationary solutions in Sec. IV. F
thermore, we propagate some of the field profiles obtai
and discuss the stability and the collision behavior of
solutions.

II. THE MODEL

In this section we derive the basic equations which ap
to both pulse and beam propagation in quadratically non
ear waveguides. We start from the most general model
scribing the vectorial interaction between the slowly varyi
envelopes of the two FHsẼ1 , Ẽ2 and the SHẼ3 ,

F i ]

]z
1 ia1

]

] x̃
1b1

]2

] x̃2G Ẽ11x1Ẽ2* Ẽ350, ~1!
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F i ]

]z
1 ia2

]

] x̃
1b2

]2

] x̃2G Ẽ21x2Ẽ1* Ẽ350, ~2!

F i ]

]z
1 ia3

]

] x̃
1b3

]2

] x̃2
2q̃G Ẽ31x3Ẽ1Ẽ250, ~3!

wherez denotes the direction of propagation andx̃ the trans-
verse coordinate of a beam in a planar waveguide or the t
of a pulse in a channel waveguide. The coefficientsan (n
51,2,3) andbn are uniquely determined by thez component
kz
(n) of the propagation vectorkWn of each wave. In the spatia
case they represent the so-called beam walk offan
5]kz

(n)/]kx
(n) and the diffraction coefficients in the plana

waveguidebn51/(2kz
(n)), whereas in the temporal case the

stand for the inverse group velocityan5]kz
(n)/]v and the

group-velocity dispersion in a channel waveguidebn
5]2kz

(n)/]v2. q̃5kz
(1)1kx

(2)2kz
(3) is the wave vector mis-

match andxn are the effective second-order nonlinear co
ficients averaged with the mode profiles~see@35#!. Now we
proceed as in the scalar case. First we change to a mo
reference frame where all fields are at rest, thus elimina
the first derivatives with respect tox̃. This can be achieved
by appropriate shifts of the center frequency of the wa
involved @20#. Next we introduce the propagation constan
of the solitary wavesk1/2. These transformations are

Ẽ1/2~ x̃,z!5E1/2~x,z!exp~ ik1/2z2 iv1/2x!,

Ẽ3~ x̃,z!5E3~x,z!exp~ i @k11k2#z2 i @v11v2#x!,

x5 x̃2
z

v
. ~4!

Note that the existence of solitary-wave solutionsE1/2(x,z)
5E1/2(x) implies nonlinearly induced phase matching@39#.
The frequency shift and the velocity of the reference fra
are given by

v1/25
b2/1~a32a1/2!1b3~a1/22a2/1!

2@~b11b2!b32b1b2#
,

~5!

1

v
5
a1b2b32a3b1b21a2b1b3

~b11b2!b32b1b2
.

The rescaled set of equations is

F i ]

]z
1b1

]2

]x2
2k1GE11x1E2*E350, ~6!

F i ]

]z
1b2

]2

]x2
2k2GE21x2E1*E350, ~7!

F i ]

]z
1b3

]2

]x2
2~q1k11k2!GE31x3E1E250, ~8!

where the mismatchq is now defined at the new carrie
frequencies:

q5q̃2b1v1
22b2v2

21b3~v11v2!
2. ~9!
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Regarding the transformation~4! some additional remark
should be made. As far as planar waveguides without w
off are considered, Eqs.~6!–~8! can be used directly. If the
walk-off terms are present~first derivatives with respect to
x̃! the above transformation can be applied formally if t
denominator in Eq.~5!, (b11b2)b32b1b2 , differs from
zero. Unfortunately, it is very close to zero if the coefficien
bn describe diffraction rather than dispersion. Hence we w
not address the case of spatial walk off in this paper. If th
coefficients describe group-velocity dispersion~temporal
case! the transformation may always be applied provid
that the paraxial approximation is valid for the shifted carr
frequency. We note that these frequency shiftsv1 andv2
may differ. Then the resulting equations hold for slow
varying envelopes of two FHs with different carrier freque
cies.

We are interested in bright SWs which exist forb1/2k1/2
.0 and b3(q1k11k2).0 only. Here we restrict tobn
.0, which corresponds to the spatial case or to anoma
dispersion if pulses are concerned. Changing to the casbn
,0 corresponds to a simple phase transformation. A fi
transformation removes the dependence on the actual m
nitude ofbn @20#:

F id ]

]Z
1
1

2

]2

]X22b GA11A2*A350, ~10!

F id ]

]Z
1
1

2

]2

]X22
1

b GA21A1*A350, ~11!

F is ]

]Z
1
1

2

]2

]X22aGA31A1A250, ~12!

with

X5
x

X0
, Z5

z

Z0
, An5

En

En
0 ,

X05S 4b1b2k1k2
D 1/4, Z05~k1k2!

21/2,

E1/2
0 5S k1k2b3

b1/2ux2/1x3u
D 1/2,

E3
05S k1k2

ux1x2u
D 1/2.

The dispersion-diffraction coefficientsbn enter only via the
termsd ands as

d5S b2b1D
1/2

, s5S b1b2b3
2 D 1/2.

The stationary solutions to Eqs.~10!–~12!, i.e., the solitary
waves, are completely determined by the parameters

a5S b1b2
b3
2k1k2

D 1/2~k11k21q! and b5S b2k1

b1k2
D 1/2
lk

ll
e

r

-

us

al
g-

thus forming a two-parameter family of solutions.a andb
have to be positive. In particularb51 corresponds to the
scalar case. The solutions are symmetric with respect to
interchange of pairs (b,A1) and (1/b,A2) which holds also
for nonstationary solutions ifd51. Thus we may restrict ou
analysis to the interval 0,b<1. It is worth mentioning that
all SWs witha,s(b/d1d/b) correspond to negative mis
match ~q,0, area left of the dotted line in Fig. 2!. Two
trivial phase symmetries can be found in the system:

A1 exp~ if1!, A2 exp~ if2!, A3 exp~ if11 if2!.
~13!

The two FHs are determined up to two constant phase
tors. The general behavior of a single SW is not affected
the mutual phase relation between both FH waves. Hence
FH waves of a SW may vary between linear~f15f2
1mp, m50,1,2,...! and circular ~f15f21mp/2, m
51,3,5...! polarization without affecting the field structure
In contrast to the scalar interaction the additional degree
freedom with respect to the phases of the FH waves ge
ates a new conservation law. In analogy to the Manley-Ro
relations@29# in the continuous wave case three conserv
quantities can be identified, viz., the total energy

Q[E
2`

1`S duA1u21
1

d
uA2u212suA3u2Ddx, ~14!

the energy imbalance between both FH components,

R[E
2`

1`S duA1u22
1

d
uA2u2Ddx, ~15!

and the Hamiltonian

H[E
2`

1`S 12 U]A1

]x U
2

1
1

2 U]A2

]x U
2

1
1

2 U]A3

]x U
2

2q8suA3u2

2A1*A2*B2A1A2B* Ddx. ~16!

In particular, the conservation of the energy imbalance
scribes the permanent vectorial character of the interact
Furthermore, the Hamiltonian depends merely on the sca
mismatchq85qZ0 which can be expressed by the para
etersa andb:

q85
a

s
2S b

d
1

d

b D . ~17!

For completeness we give the fourth conserved quantity,
momentumP,

P5 i E
2`

1`FdSA1*
]A1

]x
2A1

]A1*

]x D 1
1

d SA2*
]A2

]x
2A2

]A2*

]x D
1sSA3*

]A3

]x
2A3

]A3*

]x D Gdx, ~18!

which vanishes for all resting or real-valued solutions.
The system of Eqs.~10!–~12! is not integrable. The only

exact, analytical solution fora5b51 requires equal sech2
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envelopes for all three waves. It is the trivial extension of
scalar solution@14# and is given in@39#. Note that due to the
phase symmetry given in Eq.~13! this solution may have
different phases in both FHs and thus may differ from
scalar case substantially.

Since the Schro¨dinger limit was already discussed in@39#
we search for stationary solutions of Eqs.~10!–~12! for ar-
bitrarya andb. Because the stationary SW solutions are r
valued in the scalar interaction we restrict ourselves to
case too. These solutions correspond to the motion of a
ticle in the three-dimensional potential@39#

Veff5A1A2A32
b

2
A1
22

1

2b
A2
22

a

2
A3
2, ~19!

which is zero at the origin. Because the field of a bright S
has to vanish ifx→6` the motion starts and terminates
the origin. The turning point is determined byVeff50 and
yields the peak amplitudes of the waves:

b~A1
max!21

1

b
~A2

max!21a~A3
max!252A1

maxA2
maxA3

max.

~20!

Obviously none of the amplitudes can vanish. Moreover th
are subject to the constraints

A1
max.S a

b D 1/2, A2
max.Aab, A3

max.1. ~21!

In particular, the maximum intensity of the FH,

~A1
max!21~A2

max!2.aS b1
1

b D.2a, ~22!

diverges ifa, b, or 1/b approach infinity.

III. THE VARIATIONAL APPROXIMATION

In this section we will employ the variational approxim
tion in order to achieve a family of solitary-wave solutions
Eqs.~10!–~12! in an approximate analytical form.

The ordinary differential equations describing stationa
real-valued solutions of Eqs.~10!–~12! can be derived from
the Lagrangian

L5E
2`

1`F14 ~A18!21
1

4
~A28!21

1

4
~A38!21

b

2
A1
21

1

2b
A2
2

1
a

2
A3
22A1A2A3Gdx, ~23!

where the primes denote the derivative with respect tox.
Now we proceed as usual, choosing as trial function

the fields a simple Gaussian ansatz

An5un exp~2 1
2rnx

2!, ~24!

with un andrn real. Substituting this trial function into th
Lagrangian and integrating we arrive at the following effe
tive Lagrangian for the free parametersun andrn :
e

e

l
is
r-

y

y

r

-

L

Ap
5
1

8
u1
2Ar11

1

8
u2
2Ar21

1

8
u3
2Ar31

b

2
r1

21/2u1
2

1
1

2b
r2

21/2u2
21

a

2
g21/2u3

2

2&~r11r21r3!
21/2u1u2u3 . ~25!

We are now looking for extrema ofL. The conditions
]L/]un50 yield the amplitudesun in terms of the inverse
widths rn :

u1
25

r11r21r3

2Ar2r3
S 1b 1

1

4
r2D S a1

1

4
r3D , ~26!

u2
25

r11r21r3

2Ar1r3
S b1

1

4
r1D S a1

1

4
r3D , ~27!

u3
25

r11r21r3

2Ar1r2
S b1

1

4
r1D S 1b 1

1

4
r2D . ~28!

If we apply the conditions]L/]rn50 and eliminate the
amplitudesun by means of Eqs.~26!–~28!, the soliton pa-
rametersa and b as well as the inverse width of the S
beamr3 can be expressed in terms ofr1 andr2 .

r35
1

162r1r2
@A~r1r2116!2~r12r2!

21256r1
2r2

2

12r1r2~r11r2!#, ~29!

a5
r3~r11r213r3!

4~r11r22r3!
, ~30!

b5
r1~3r11r21r3!

4~r22r11r3!
. ~31!

For fixed parametersa andb the width parametersrn can be
determined numerically by inverting Eqs.~29!–~31!. We
found the width parameters to be uniquely determined by
parametersa andb. The amplitudesun can be calculated by
means of Eqs.~26!–~28!. One example of a SW which is
determined in this way is displayed in Fig. 1. Although t

FIG. 1. Field structures of the SWs~solid line! in comparison
with the results obtained from the Lagrangian approach~dashed-
dotted line!. Parameters:a50.156,b50.778.
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parametersa andb have rather extreme values the Gauss
matches the exact field structure quite well.

A second and maybe more convenient way is to reg
r1 and r2 as a new set of independent parameters. W
respect to this alternative notation SW solutions exist
r1r2,16 @see the denominator of Eq.~29!# and are obvi-
ously symmetric with respect to an interchange ofr1 and
r2 . All three width parametersr i obey the inequality of a
triangler i1r j.rk . All the amplitudes depend on the widt
parameters explicitly@see Eqs.~26!–~28!# and hence also the
conserved quantities@see Eqs.~14!–~16!# can be expresse
analytically.

The analytical expressions derived above provide us w
a powerful tool to investigate the behavior of the SWs
some limiting cases. For largea and subsequently for pos
tive mismatch@see Eq.~17!# the width parameters of bot
FH beams are restricted to a hyperbola defined by (r1
1r2)(2r21r1)516, while for the inverse width of the SH
beam we haver35r11r2 . The squared amplitudes of th
SH beamu3

2 remain finite whileu1
2 andu2

2→` @see inequal-
ity ~21!#. The energy of the whole system is stored in the
waves and diverges with increasing amplitudes or prop
tionally to a. The relation between energy imbalance a
total energy@see Eqs.~14! and ~15!# is

R

Q
5

d2r2
22r1

2

d2r2
21r1

2 ~32!

and varies between21 and11. In agreement with the find
ings in @39# the peculiarities of the vectorial interaction a
maintained and the system does not converge to the s
case.

Fora→0 a second interesting limiting case is obtained
corresponds to a negative mismatch. It follows from E
~29!–~31! that all width parametersr i vanish too. Hence the
beams become infinitely broad. A more detailed analysis
veals that the width parameterr3 of the SH beam tends to
zero proportionally toa, where those of the FH beam
(r1/2) diminish proportionally toAa only. Thus more and
more of the energy is carried by the SH. The relation
tween total energy and energy imbalance is for smalla.

R

Q
5
2~d22b2!

bds
a. ~33!

Hence all the field distributions converge to those kno
from the scalar case.

A third limiting case occurs for diverging wave vecto
imbalance ifb approaches either zero or infinity. As alrea
mentioned, this case is closely related to the situation wh
a→` @39#. It suffices to deal with the case of vanishingb.
This limiting case corresponds to a negative mismatch@see
Eq. ~17!#. All width parameters tend to zero. Whereasr2 and
r3 decrease proportionally toAb, r1 falls more rapidly like
b itself. Consequently the first FH wave contains all the e
ergy. It grows to infinity proportionally tob23/2. For the
ratio between energy imbalance and total energy we ob
R/Q511.

It might be interesting to translate the analytical resu
obtaining to the experimental situation. We demonstrate
by means of the SW displayed in Fig. 1. All quantities a
n

d
h
r

h

r-
d

lar

t
.

e-

-

n

re

-

in

s
is

determined for a spatial SW which propagates in an i
implanted planar waveguide~thickness about 4mm! on top
of a KTP crystal. We assume a FH wavelength ofl
51.064mm where phase matching is achieved by coupl
of two orthogonal FH modes~nonlinear coefficient:deff
53.1 pm/V, for more details concerning the derivation s
e.g., @35#!. The diffraction coefficients are given byb15b2
5l/4/p andb35b2/2. It is evident that the results critically
depend on the mismatch which can be tuned within a cer
range. For the SW displayed in Fig. 1 a negative mismatch is
required. Its optimum value results from a trade-off betwe
minimal power requirements and an acceptable beam wi
Note that all intensities scale with the squared mismatch
the beam width decreases with the square root of the m
match. Consequently the total energy of the SW grows
uqu3/2. Here we assume a mismatch ofq5210/cm which is
a typical value experimentally achieved@33#. We use the
approximate analytical solutions to determine the relev
parameters required to perform an experiment. We fix b
width parametersr150.445 andr250.491 of the FH wave
and obtain from Eqs.~29!–~31! r350.253, a50.156, and
b50.778. The amplitudes are determined by using E
~26!–~28! asu1

250.523,u2
250.346, andu3

251.59. Integrat-
ing the trial functions we obtain the normalized energy of t
SW Q57.8 as well as the relative imbalanceR/Q
50.0637. Now we undo the normalization and determine
corresponding unscaled wave numbers

k15
qb1b

2

b3ab2b22b1b
2 , k25

qb2
b3ab2b22b1b

2 ~34!

to bek153.92/cm andk256.47/cm. It is now straightfor-
ward to calculate the respective power and the beam wi
The total power carried by the SW is 2.34 kW, where t
width of the beam is mainly determined by the SH comp
nent and amounts to 55.6mm.

IV. NUMERICAL RESULTS

The SW solutions of Eqs.~10!–~12! for different values
of a and b were determined using a Newton iteratio
scheme. We are interested in single hump solutions only
typical field structure is displayed in Fig. 1 together with t
corresponding Gaussian obtained from the Lagrangian
proach. Obviously the Gaussian fits quite well to the ex
fields. Furthermore, we have calculated both the total ene
Q and the relative energy imbalanceR/Q in a wide param-
eter range~see Fig. 2!. The upper boundary of both figure
corresponds to the scalar case (b51). Again the agreemen
between the Lagrangian approach and the exact solutio
very good and the predictions with respect to the differ
limiting cases are verified. In general the total energy
creases ifb deviates from 1. It can be clearly recognize
from Fig. 2~a! that the total energy diverges if one of th
parametersa or b approaches zero or infinity. Furthermor
the energy imbalance vanishes together witha and we can
expect the system to converge to the scalar case@see Fig.
2~b!#. Note that no significant changes occur if the misma
changes its sign.

The next step is to solve the system of partial differen
equations~10!–~12! numerically with any stationary solution
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as the initial condition. This is done by using a standa
beam propagation method~BPM!. A simple collision experi-
ment reveals that two SWs fuse if their interaction angle
their relative velocity is less than a critical value~see Fig. 3!.
Hence we may draw the conclusion that, similarly to t
scalar case@24#, the solutions under consideration are so
tary waves rather than solitons.

In analogy to the scalar case both stable@Fig. 4~a!# and
unstable solutions exist@Fig. 4~b!#. Unstable solutions nee
not decay but can instead propagate over large dista
where they are subject to persistent oscillations@22#. This
behavior is maintained in the vectorial case as can be see
Fig. 4~b!. It can be recognized from Fig. 4 that small chang
in the imbalanceb may essentially affect the stability beha
ior, i.e., an increasing imbalance and thus a more pronoun
vectorial interaction seems to lead to an effective stabili
tion of the SWs. Even for parametersa where scalar SWs
become unstable@22# vectorial SWs propagate stably.

To clarify this issue we make use of a criterion frequen
employed in probing the soliton stability@40#. One has to
investigate, for example, the Hamiltonian as a function of
conserved quantities left. If the resulting function is mul
valued only one branch is stable. A transition from o
branch to another results in a change of the stability. In
scalar case with negative mismatch the Hamiltonian i
double-valued function of the energy. The stability chang
at a minimum of the energy of the SW. In the case of
vectorial interaction both the energy and the energy imb
ance have to be considered. In performing this analysi

FIG. 2. Contour plots of the energyQ ~a! and the relative en-
ergy imbalanceQ/R ~b! of spatial vectorial solitons vs the solito
parametersa andb ~d51, s52!. Solid line: numerical calcula-
tion; dashed-dotted line: variational approach; dotted line: zero m
match.
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turns out to be convenient to partially undo our previo
transformations because the governing equations and
scaling should not depend on the parametersa andb explic-
itly. Similar to @28#, we rescale the fields as

Â15g2A1~gX,g2Z!expS i b

d
ZD ,

Â25g2A2~gX,g2Z!expS i d

b
ZD , ~35!

s-

FIG. 3. Elastic~a! and inelastic~b! collisions of vectorial SWs.
Parameters: a51, b50.8; relative velocitiesv5dX/dZ: ~a! v
563, ~b! v560.2.
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Â35g2A3~gX,g2Z!expS i Fbd 1
d

b GZD ,
where the scaling parameterg has been introduced as

g5S uqu
a2s~b/d1d/b! D

1/2

.

Note that the transformation~35! also changes the conserve
quantities to

Q̂5g3Q, R̂5g3R, Ĥ5g5H. ~36!

FIG. 4. Stable and unstable propagation of vectorial s
tons. Parameters:~a! a50.156, b50.778; ~b! a50.156, b
50.783 ~d51, s52!.
In Fig. 5~a! the HamiltonianĤ is plotted as a function of the
conserved quantities’ energyQ̂ and imbalanceR̂. Although
the Hamiltonian is a unique function of the parametersa and
b this surface is multivalued. The critical line which sep
rates stable from unstable domains is projected onto thea-b
plane in Fig. 5~b!. Thus the SWs become unstable if th
vector function„Q̂(a,b),Q̂(a,b)… is not locally invertible
or if the following expression holds:

]Q̂

]a

]R̂

]b
2

]Q̂

]b

]R̂

]a
. ~37!

It is evident that our preliminary results are validated, vi
that the domain of instability is largest for the scalar ca
(b51) and shrinks with increasing imbalance~decreasing
b!. To accomplish the limita→0 is not straightforward and
needs particular care. This is because the width of the S
tends to infinity in this limit. Rather than the critical numer
cal results we use the field shapes obtained by the variati
approach to calculate the conserved quantities. This pro
dure results in a termination pointbcrit for a→0 with

bcrit5
d

&
~)61!. ~38!

We double checked the results concerning the stability of
SWs by numerical means~BPM calculations! and found a
reasonable agreement.

The most surprising result of this stability analysis is t
stabilizing effect of the energy imbalance. Already a ve
weak imbalance prevents the decay of the SWs. If we co
pare the results displayed in Figs. 2~b! and 5~b! we find that

-

FIG. 5. Stability of vectorial SWs. ~a! Hamiltonian vs energy
Q and energy imbalanceR, the turning points of the surface ar
given at the bottom of the plot.~b! Critical line between the stable
and unstable areas.
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in the spatial case no instability occurs if the relative ene
imbalance (R/Q) exceeds the very small value of 0.022.

V. CONCLUSION

In this work, we have investigated solitary waves me
ated by the vectorial or type-II interaction in a nonline
optical medium in the presence of diffraction or dispersio
We derived the basic set of equations to describe the pr
gation of both spatial and temporal SWs. Some analyt
expressions to estimate the peak amplitudes of the SWs
found. To determine the complete shape of the SWs un
el

.
t.

d

, E

e-

I

r-

M

n
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m

y

-

.
a-
al
re
er

investigation a variational approach and direct numeri
computations were used. An excellent agreement betw
both methods could be obtained. Studying the collision
havior of the SWs we found two SWs to fuse for sm
relative velocities as expected for a nonintegrable system
found. The new parameterb or the energy imbalancedR
introduced by the vectorial model influences the stability
the solutions. Already a rather weak energy imbalance st
lizes the SWs. Unstable SWs are found in the vicinity of t
scalar model~very small energy imbalance! only. They need
not decay completely but may transform into long-living o
cillating solutions.
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ev.
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