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Vectorial solitary waves in optical media with a quadratic nonlinearity
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We search for self-trapped beams due to the vectorial interaction of two orthogonally polarized components
of a fundamental harmonic and a single component of the second harmonic in a quadratically nonlinear
medium. The basic set of equations for both the temporal and the spatial case is derived. The resulting
two-parameter family of solitary waves is investigated by means of a variational approximation and by direct
numerical methods. Several limiting cases and differences to the scalar interaction in quadratic media are
discussed. The propagation of stable solitary waves and mutual collisions are simulated and the decay of
unstable solitary waves is demonstrated. We predict an internal boundary in the soliton parameter space which
separates stable and unstable domdi8$063-651X97)06806-3

PACS numbds): 42.65.Tg, 42.65.Ky

I. INTRODUCTION Large amplitude modulations of the FH were induced by
varying the phase of the second harmot@itd) [11]. Even
For many decades solitons have attracted a great deal bhsic photonic components such as nonlinear directional
interest because of their robust, particlelike behavior. Theyxouplers[12] and Mach-Zehnder interferometdis3] based
may be regarded as fundamental excitations of various noren LiNbO; channel waveguides were successfully operated.
linear systems in biology, chemistry, or physics. In particu- Secondly it was found that this phase modulation may
lar, the resonant as well as nonresonant interaction of lighbalance the dispersiofidiffraction-) induced pulse broaden-
with matter was shown to create an ideal environment foing (beam spreading As a consequence mutually trapped
solitons to exist. Self-induced transparency solitons travesolitary wavegSW) may be formed consisting of the funda-
without any losses through an ensemble of resonant twamental and second harmoni¢$4-28. A one-parametric
level systems and collide without losing their stabiliti].  family of solutions was numerically determing2D] with the
Instantaneous cubiderr) nonlinearities which are based on exception of one element which is known analyticdliy].
nonresonant effects may prevent the diffraction-inducedoth stable and unstable SWs were found and the corre-
spreading of beams or dispersion-induced broadening afponding parameter ranges were identifiz®,23. Recently,
pulses. The evolution of the corresponding spatial and temthe collision of these SWs has been studi24l,25. As could
poral envelope solitons may be described by the nonlineape anticipated for a nonintegrable system, it was found that
Schralinger equation. Spatial solitons were found to exist inthe colliding SWs fuse for sufficiently small relative veloci-
many transparent materials like fused silied semiconduc- ties.
tors[3], and liquids[4]. Particular emphasis was paid to the  As a matter of fact, the existence of spatial bright SWs
investigation of the propagation of temporal solitons in fiberswas experimentally demonstrated in planar LiNbO
because of their potential use as a fundamental bits in higlvaveguideq26]. In comparison to cubic nonlinearities the
bit-rate, long-haul signal-transmission systdmg$]. interaction of two waves evokes novel effects. A representa-
In recent years a renewed interest emerged regarding quive example is the stable propagation of two-dimensional
dratic nonlinearities arising in noncentrosymmetric materialself-guided beams in a KTP-bulk crysf&7,28 which con-
like potassium titanyl phosphatéKTP), lithium niobate trasts the catastrophic self-focusing in a cubic nonlinearity.
(LINbOg), and poled polymers. Earlier investigations wereUntil now the interest was almost exclusively focused on the
primarily concentrated on the efficient frequency conversiorsituation where one FH and SH component are involved.
of the light field. Now two new issues are of interest. First asObviously, the degrees of freedom of the dynamical system
an alternative for using cubic nonlinearities in all-optical will increase if the number of interacting waves increases.
switching schemes it was proposed to exploit phase and anThis can be achieved by leaving the degenerated case and
plitude modulation of the fundamental harmonic generatesgtudying the three-wave parametric interacti@®] or by
by consecutive up and down conversion. exploiting the so-called type-Il phase matchivgctorial in-
Indeed, large nonlinearly induced phase shifts of the funieraction [30]. In the latter case two orthogonally polarized
damental harmoni¢~H) were observed in KTP crysta[g], FH components create a single SH field which is then down
in LINbO3 channel waveguideg3], and in phase matched converted to both FHs.
KTP waveguide$9,10]. In this context it may be anticipated This type of interaction has already attracted a great deal
that novel all-optical operations can be implemented and thatf interest in situations where dispersion and diffraction can
the required switching power can be reduced. Recently thbe neglected31-38. The power imbalance between the
validity of this scheme was demonstrated experimentallyFHs represents an additional control parameter. It offers an-
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other opportunity to tune the nonlinear interaction and can be 9 J 9% ]~ -~

used to create novel effects which are based on amplitude [i = Tiay =+Dby == Ez+ x2E71E3=0, 2
and phase modulation. In particular, the nonlinearly induced

phase shift of every FH depends on this new degree of free- 9 P 52 _ o

dom very sensitively34,35. A number of experiments were i = +ias = +bs ﬁ_a Es+ x3E1E5>=0, 3

devoted to this subject. Nonlinearly induced polarization ro-
tation was observe@37,38 and a transistorlike switching

ber%?]vior_ cou]ch hbe obtaine[($6].k . include diffracti dverse coordinate of a beam in a planar waveguide or the time
di € aim o t E presgnt V¥OL IS to 'n.ClIJ.e ! racnon r:\jn of a pulse in a channel waveguide. The coefficiemis(n
ispersion into the study of the vectorial interaction an to=1,2,3) andb, are uniquely determined by tzecomponent

search for solitary-wave solutions. We restrict ourselves QM of the propagation vectd® of each wave. In the spatial
the one-dimensional case which is relevant for self-guided? bropag ' P
Gase they represent the so-called beam walk aff

beams in planar waveguides or for pulses propagating i~ ", " "{n) . . - .
channel waveguides or fibers. The basic set of normalized dkz 19k, ” and the diffraction coefficients in the planar

equations likewise describes the situation of the nondegenefaveguided, = 1/(2k{), whereas in the temporal case they
ated parametric interaction. This case was studied in a receftand for the inverse group velocigy,=ok{"/dw and the
paper[39]. Although it has been shown that the set of nor-group-velocity dispersion in a channel waveguidsg
malized equations exhibits solitary-wave solutions, which=3%k{"/dw?. G=kM+k@—-k{® is the wave vector mis-
were termed ‘“three-wave bright spatial solitons,” the match andy, are the effective second-order nonlinear coef-
“physical” equations used in this work do not describe at all ficients averaged with the mode profilesee[35]). Now we

the propagation of light beams in a planar waveguide aproceed as in the scalar case. First we change to a moving
claimed. Nevertheless the conclusions drawn from the forreference frame where all fields are at rest, thus eliminating
mal solutions are interesting and show that a two-parametrithe first derivatives with respect %a This can be achieved
family of stationary localized solutions exists. Evidently, by appropriate shifts of the center frequency of the waves
SWs known from the scalar interaction appear in the limitinginvolved [20]. Next we introduce the propagation constants
case of balanced excitation of both FHs. Moreover, it waof the solitary wavesc,;,. These transformations are

pointed out that in some particular cases one of the three _

fields can be expressed by the two remaining ones. This Eao(X,2) =Eq(X,2)expi kqz—iwqX),

holds not only for the Schainger limit as it does for the

scalar interaction and large phase mismatch but also for an Ea(X,2) = Ea(X,2)exp(i[ k1+ Ko]z—i[ w1+ w,]X),

extreme imbalance of the FH waves. But even in this case an

analytical solution exists only if both remaining fields are z

equal. Hence in the present paper the main emphasis is on X=X=—. (4)

the analytical description of the vectorial SWs, and on ef-

fects which are due to the vectorial nature of the interactionyte that the existence of solitary-wave solutidg,(x,z)
on the stability, and on the collision behavior. —E,(x) implies nonlinearly induced phase matchiigg).

The paper is organized as follows. In Sec. Il we derive therpe frequency shift and the velocity of the reference frame
basic set of equations which describe both the propagation gfe given by

short pulses and narrow beams in quadratically nonlinear

wherez denotes the direction of propagation anthe trans-

waveguides. We determine the respective integrals of mo- by(az—ayy) + bg(ag,—ay,)
tion. In Sec. lll we proceed with the variational approach W1/~ 2I(b.+b-)ba—bb ;
which gives a fully analytical description of the solitary- [(b1b2)b3=bsb] (5)

wave solution. We compare our analytical results with those
obtained by a direct numerical integration and study the dy- =
namical behavior of the stationary solutions in Sec. IV. Fur- v (by+b2)bs—b;b;
thermore, we propagate some of the field profiles obtaineq.
and discuss the stability and the collision behavior of the

he rescaled set of equations is

solutions. 5
i 5+b1 2 K E1+x1E3E3=0, (6)
Il. THE MODEL 52
.9 9 fE
In this section we derive the basic equations which apply : 9z +b; ox2 K2 Eat+ x2E1E3=0, @
to both pulse and beam propagation in quadratically nonlin-
ear waveguides. We start from the most general model de- J 52

Es+x3E1E2=0, (8

scribing the vectorial interaction between the slowly varying
envelopes of the two FHE,, E, and the SHE3;,

i 54‘[33 &—Xz—((]‘l' K1+ K2)
where the mismatcly is now defined at the new carrier
frequencies:

9 P |~ —

't gt g Bt B Be=0 (D) =G~ b1}~ bow3+bs(w1+wy)2 ©)
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Regarding the transformatigd) some additional remarks thus forming a two-parameter family of solutions.and 8
should be made. As far as planar waveguides without walkave to be positive. In particulgg=1 corresponds to the
off are considered, Eq$6)—(8) can be used directly. If the scalar case. The solutions are symmetric with respect to an
walk-off terms are presertfirst derivatives with respect to interchange of pairsg,A;) and (18,A,) which holds also
X) the above transformation can be applied formally if thefor nonstationary solutions i#=1. Thus we may restrict our
denominator in Eq.(5), (b;+b,)bs—b;b,, differs from analysis to the interval € 8<1. It is worth mentioning that
zero. Unfortunately, it is very close to zero if the coefficientsall SWs witha<o(8/ 6+ 6/8) correspond to negative mis-

b, describe diffraction rather than dispersion. Hence we willmatch (q<0, area left of the dotted line in Fig.).2Two

not address the case of spatial walk off in this paper. If thesgrivial phase symmetries can be found in the system:
coefficients describe group-velocity dispersigtemporal

case the transformation may always be applied provided A1 eXidi), Az expigy), Az expidi+idy).

that the paraxial approximation is valid for the shifted carrier
frequency. We note that these frequency shiftsand w,
may differ. Then the resulting equations hold for slowly
varying envelopes of two FHs with different carrier frequen-
cies.

We are interested in bright SWs which exist tof,«,»
>0 and bs(g+ «1+ k,)>0 only. Here we restrict td,
>0, which corresponds to the spatial case or to anomalou
dispersion if pulses are concerned. Changing to the base
<0 corresponds to a simple phase transformation. A fin
transformation removes the dependence on the actual ma
nitude ofb,, [20]:

The two FHs are determined up to two constant phase fac-
tors. The general behavior of a single SW is not affected by
the mutual phase relation between both FH waves. Hence the
FH waves of a SW may vary between lineéd,;= ¢,
+ma, m=0,1,2...) and circular (¢;=¢d,+ma/2, m
=1,3,5..) polarization without affecting the field structure.

i contrast to the scalar interaction the additional degree of
reedom with respect to the phases of the FH waves gener-
tes a new conservation law. In analogy to the Manley-Rowe
9e'|ations[29] in the continuous wave case three conserved
gquantities can be identified, viz., the total energy

2
. +oo
[Iﬁg—z-f'ié,—xz_,g A1 +A3A3=0, (10 QEJ_

1
B AP+ < |Agl?+ 20|A3|2) dx, (14

the energy imbalance between both FH components,

i 9 1% 1 .
A+ A A;=0, (11)

892 2X2 B

A 2 1 2
i sz (6|A1| 1A )dx, (15
Jd 14 e

IUﬁ'FEW—a’

A3+ A1A2: 0, (12)
and the Hamiltonian

2

with H_Fw 1[0A1]2 1]0A,% 1 |0A; AL
=)\l Tala] T2l TYelAd
X—L Z—i A —5
Xo' Zy " EY s .
—ATASB—A;A,B* |dx. (16)
4byb,\ M i
= Kikp ] Zo=(K1K2) % In particular, the conservation of the energy imbalance de-

scribes the permanent vectorial character of the interaction.
)1,2 Furthermore, the Hamiltonian depends merely on the scaled

0 ( K1K2D3 mismatchq’ =qZ, which can be expressed by the param-

Eip=

b2l x21x3l etersa and 3:
1/2
K1K L a (B0
Eg=( ! 2) . q=——(5+—). (17)
Ix1x2l o B
The dispersion-diffraction coefficients, enter only via the For completeness we give the fourth conserved quantity, the
termss and o as momentumP,
b\ 1/2 b.b.\ 12 [t . OAL oAT\ 1 . 9A, IAS
5=(—2) o-=(—1 ) S B e e A f e
by b3 | -
. . _ : A A}
The stationary solutions to Eq&l0)—(12), i.e., the solitary +o| A} —3—A3 —3) dx, (18
waves, are completely determined by the parameters X X
b.b, |12 b 112 which vanishes for all resting or real-valued solutions.
a:( 21 2 ) (ki +Kko+q) and ﬁ:( 2K1) The system of Eqg10)—(12) is not integrable. The only
b3kik: b1k exact, analytical solution for=8=1 requires equal seéh
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envelopes for all three waves. It is the trivial extension of the 1.8
scalar solutiof14] and is given i 39]. Note that due to the 1.6
phase symmetry given in E¢l3) this solution may have 14
different phases in both FHs and thus may differ from the 12
scalar case substantially. intensity 1

Since the Schidinger limit was already discussed|[ig9] 08
we search for stationary solutions of Eq$0)—(12) for ar- 06
bitrary @ and 8. Because the stationary SW solutions are real 04
valued in the scalar interaction we restrict ourselves to this 0'2
case too. These solutions correspond to the motion of a par- '0

ticle in the three-dimensional potent{&9]

B 2
2

1
Al— oY A2— > A2 (19 FIG. 1. Field structures of the SW(solid ling) in comparison
B with the results obtained from the Lagrangian approédshed-

dotted lin Parameterse=0.156, 0.778.
which is zero at the origin. Because the field of a bright SW o A=

has to vanish ix— * o the motion starts and terminates at

Veir=A1AAz3—

the origin. The turning point is determined Mgz=0 and L: E U+ } u2 + u + —1/2 2
yields the peak amplitudes of the waves: Jm 8 iVes 2Vp2 3\/_
max, 2 1 max, 2 max, 2 __ ~ p Maxa maxa max 1 1/2 2 -1/2,2
B(AT™) +E(A2ax) + a(AF®) 2= 2ATTATTAT, 2,8 +2 Y Uz
(20 _
—V2(p1+patps) MUsUou;. (25)
Obviously none of the amplitudes can vanish. Moreover they . .
are subject to the constraints We are now looking f(_)r extrema df. The con_dltlons
dL/du,=0 yield the amplitudes,, in terms of the inverse

a\ 12 widths p,,:
ATaX>(E) , ATP>\aB, ATP>1. (21

W= p1tp2tps 1_'_1 )(a-i—l ) (26)
In particular, the maximum intensity of the FH, Y 2\pps \B 4 P2 4P
(AT®)21 (A2 o B+ = | >2a (22 p_Pitpetps(, 1 !
1 2 B ’ u2 ZW B+Zp1 a+Zp3 y (27)
1P3
diverges ifa, B, or 1/8 approach infinity.
2 P1tp2tps 1 ) 1.1 ) ) 28
37 APLI\ AT 4, P2
IIl. THE VARIATIONAL APPROXIMATION 2\p1p2 4 B 4

In this section we will employ the variational approxima-  If we apply the conditions)L/dp,=0 and eliminate the
tion in order to achieve a family of solitary-wave solutions to amplitudesu,, by means of Eqs(26)—(28), the soliton pa-
Egs.(10—(12) in an approximate analytical form. rametersa and 8 as well as the inverse width of the SH

The ordinary differential equations describing stationarybeamp; can be expressed in terms @f and p,.
real-valued solutions of Eq$10)—(12) can be derived from

the Lagrangian 1
p3= m[\/(mpﬁlﬁ)z(m p2)°+256p7p5

L= [T aper A2—A2+BA2+ A3
=] .12 (A" + ( 2)°+ + (A3) Y +2p1pa(p1tp2)], (29)
a d _ pa(p1tpat3ps) (30
+ 5 AT ArAAg dX, (23 4(p1tp2—p3) '
where the primes denote the derivative with respeot.to _ p1(3p1tpatps3) 31)
Now we proceed as usual, choosing as trial function for  A(py—pitps)

the fields a simple Gaussian ansatz
For fixed parameters and 8 the width parameters, can be
A,=U, exp—3p,x?), (24 determined numerically by inverting Eq$29—(31). We
found the width parameters to be uniquely determined by the
with u, and p,, real. Substituting this trial function into the parametersx and 8. The amplitudes,, can be calculated by
Lagrangian and integrating we arrive at the following effec-means of Eqs(26)—(28). One example of a SW which is
tive Lagrangian for the free parametersandp,: determined in this way is displayed in Fig. 1. Although the
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parametersr and 8 have rather extreme values the Gaussiardetermined for a spatial SW which propagates in an ion-
matches the exact field structure quite well. implanted planar waveguidghickness about 4um) on top
A second and maybe more convenient way is to regar@f a KTP crystal. We assume a FH wavelength )of
p, and p, as a new set of independent parameters. With=1.064 um where phase matching is achieved by coupling
respect to this alternative notation SW solutions exist forof two orthogonal FH modegnonlinear coefficient:dqs
p1p2<16 [see the denominator of E§29)] and are obvi- =3.1 pm/V, for more details concerning the derivation see,
ously symmetric with respect to an interchangepefand  e.g.,[35]). The diffraction coefficients are given by, =b,
p2. All three width parameterp; obey the inequality of a =\/4/7 andb;=b,/2. It is evident that the results critically
trianglep; + p;> p\.. All the amplitudes depend on the width depend on the mismatch which can be tuned within a certain
parameters explicitlysee Eqs(26)—(28)] and hence also the range. For the SW displayed in Fifj a negative mismatch is
conserved quantitiessee Eqs(14)—(16)] can be expressed required. Its optimum value results from a trade-off between
analytically. minimal power requirements and an acceptable beam width.
The analytical expressions derived above provide us witliNote that all intensities scale with the squared mismatch and
a powerful tool to investigate the behavior of the SWs inthe beam width decreases with the square root of the mis-
some limiting cases. For large and subsequently for posi- match. Consequently the total energy of the SW grows as
tive mismatch[see Eq.(17)] the width parameters of both |q|3’2. Here we assume a mismatcha® — 10/cm which is
FH beams are restricted to a hyperbola defined by,(2 a typical value experimentally achievé@3]. We use the
+p2)(2p,+ p1) =16, while for the inverse width of the SH approximate analytical solutions to determine the relevant
beam we have;=p;+p,. The squared amplitudes of the parameters required to perform an experiment. We fix both
SH beamu3 remain finite whileu? andu3— o [see inequal- Wwidth parameterg,=0.445 andp,=0.491 of the FH wave
ity (21)]. The energy of the whole system is stored in the FHand obtain from Eqs(29)—(31) p3=0.253, «=0.156, and
waves and diverges with increasing amplitudes or proporS=0.778. The amplitudes are determined by using Egs.
tionally to a. The relation between energy imbalance and(26)—(28) asu§=0.523,u§=0.346, andJ§=1.59. Integrat-

total energy{see Eqs(14) and(15)] is ing the trial functions we obtain the normalized energy of the
s 2 2 SW Q=7.8 as well as the relative imbalancB/Q
R_ p2—p1 (32) =0.0637. Now we undo the normalization and determine the
Q 8%p5+ps corresponding unscaled wave numbers
and varies betweenr 1 and+ 1. In agreement with the find- qb,B? gb,

K1 K2

ings in[39] the peculiarities of the vectorial interaction are :bga,B—bz—bl,Bz (34)

s in ~bgaB—by—by B’
maintained and the system does not converge to the scalar

case. to be k;=3.92/cm andk,=6.47/cm. It is now straightfor-

Fora—0 a second interesting limiting case is obtained. Itward to calculate the respective power and the beam width.
corresponds to a negative mismatch. It follows from EqsThe total power carried by the SW is 2.34 kW, where the
(29)—(31) that all width parameterg; vanish too. Hence the width of the beam is mainly determined by the SH compo-
beams become infinitely broad. A more detailed analysis renent and amounts to 55&m.
veals that the width parametgg of the SH beam tends to
zero proportionally toa, where those of the FH beams
(p1j») diminish proportionally toya only. Thus more and
more of the energy is carried by the SH. The relation be- The SW solutions of Eqg10)—(12) for different values
tween total energy and energy imbalance is for small of @« and B were determined using a Newton iteration

scheme. We are interested in single hump solutions only. A
R 2(8°-p% 33  Wypical field structure is displayed in Fig. 1 together with the
Q Béo a (33 corresponding Gaussian obtained from the Lagrangian ap-
proach. Obviously the Gaussian fits quite well to the exact
Hence all the field distributions converge to those knownfields. Furthermore, we have calculated both the total energy
from the scalar case. Q and the relative energy imbalanB2Q in a wide param-

A third limiting case occurs for diverging wave vector eter rangesee Fig. 2 The upper boundary of both figures
imbalance ifg approaches either zero or infinity. As already corresponds to the scalar cagg<(1). Again the agreement
mentioned, this case is closely related to the situation whergetween the Lagrangian approach and the exact solution is
a—o [39]. It suffices to deal with the case of vanishiBg  very good and the predictions with respect to the different
This limiting case corresponds to a negative mismasele  |imiting cases are verified. In general the total energy in-
Eq.(17)]. All width parameters tend to zero. Wherggsand  creases if3 deviates from 1. It can be clearly recognized
p3 decrease proportionally tgg3, p, falls more rapidly like  from Fig. 2a) that the total energy diverges if one of the
B itself. Consequently the first FH wave contains all the enparametersy or 8 approaches zero or infinity. Furthermore,
ergy. It grows to infinity proportionally tg3~%2 For the the energy imbalance vanishes together witand we can
ratio between energy imbalance and total energy we obtaiexpect the system to converge to the scalar ¢ase Fig.
R/Q=+1. 2(b)]. Note that no significant changes occur if the mismatch

It might be interesting to translate the analytical resultschanges its sign.
obtaining to the experimental situation. We demonstrate this The next step is to solve the system of partial differential
by means of the SW displayed in Fig. 1. All quantities areequationg10)—(12) numerically with any stationary solution

IV. NUMERICAL RESULTS
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(@

FIG. 2. Contour plots of the energ® (a) and the relative en-
ergy imbalanceQ/R (b) of spatial vectorial solitons vs the soliton
parametersy and 8 (=1, 0=2). Solid line: numerical calcula-
tion; dashed-dotted line: variational approach; dotted line: zero mis-
match.

as the initial condition. This is done by using a standard
beam propagation meth@dBPM). A simple collision experi-
ment reveals that two SWs fuse if their interaction angle or
their relative velocity is less than a critical val(see Fig. 3.
Hence we may draw the conclusion that, similarly to the
scalar cas¢24], the solutions under consideration are soli-
tary waves rather than solitons.

In analogy to the scalar case both stajffg. 4(a)] and
unstable solutions exi$fFig. 4(b)]. Unstable solutions need
not decay but can instead propagate over large distances
where they are subject to persistent oscillatip®g]. This
behavior is maintained in the vectorial case as can be seen in
Fig. 4(b). It can be recognized from Fig. 4 that small changes
in the imbalances may essentially affect the stability behav- (b) X X
ior, i.e., an increasing imbalance and thus a more pronounced
vectorial interaction seems to lead to an effective stabiliza-
tion of the SWs. Even for parametesswhere scalar SWs
become unstablg22] vectorial SWs propagate stably. i

To clarify this issue we make use of a criterion frequently —
employed in probing the soliton stabilifyt0]. One has to  turns out to be convenient to partially undo our previous
investigate, for example, the Hamiltonian as a function of theransformations because the governing equations and the
conserved quantities left. If the resulting function is multi- scaling should not depend on the parameteasd 8 explic-
valued only one branch is stable. A transition from oneitly. Similar to [28], we rescale the fields as
branch to another results in a change of the stability. In the 8
scalar case with negative mismatch the Hamiltonian is a A 2 2 T
double-valued function of the energy. The stability changes Ar= 7 AulrXy Z)GX%I 57
at a minimum of the energy of the SW. In the case of the
vectorial interaction both the energy and the energy imbal-
ance have to be considered. In performing this analysis it

FIG. 3. Elastic(a) and inelastigb) collisions of vectorial SWs.
Parameters: =1, 8=0.8; relative velocitiesy = 6X/5Z: (a) v
+3,(b) v==0.2.

- )
A= Y2A,(¥X, yzz)exp( i B z) , (35)
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Hamiltonian
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FIG. 5. Stability of vectorial SWs. (a) Hamiltonian vs energy
Q and energy imbalancR, the turning points of the surface are
given at the bottom of the plotb) Critical line between the stable
and unstable areas.

In Fig. 5(@) the HamiltoniarH is plotted as a function of the
conserved quantities’ ener@y and imbalanceér. Although
the Hamiltonian is a unique function of the parameteend
B this surface is multivalued. The critical line which sepa-
rates stable from unstable domains is projected ontaxtse
plane in Fig. 8b). Thus the SWs become unstable if the
vector function(Q(«,B),Q(«,B)) is not locally invertible
or if the following expression holds:

dQ JR dQ IR

a—Q AN (37

adB 9B da

It is evident that our preliminary results are validated, viz.,
that the domain of instability is largest for the scalar case
(B=1) and shrinks with increasing imbalanédecreasing

B). To accomplish the limitw— 0 is not straightforward and
needs particular care. This is because the width of the SWs
tends to infinity in this limit. Rather than the critical numeri-
cal results we use the field shapes obtained by the variational
approach to calculate the conserved quantities. This proce-
dure results in a termination poig.,;; for a—0 with

FIG. 4. Stable and unstable propagation of vectorial soli-
tons. Parametersa) «=0.156, 8=0.778; (b) «=0.156, B
=0.783(6=1, 0=2).

|

Asz Y2A3(¥X, yZZ)eX;{ [ b

JE— + J—
5 B 5
. . Beit=——= (vV3+1). (39
where the scaling parametgrhas been introduced as v2
_ lq] 12 We double checked the results concerning the stability of the
Y= a—o(Bl5+ 51 B) SWs by numerical mean@BPM calculationy and found a

reasonable agreement.
Note that the transformatiof5) also changes the conserved  The most surprising result of this stability analysis is the
guantities to stabilizing effect of the energy imbalance. Already a very
R R R weak imbalance prevents the decay of the SWs. If we com-
Q=7%Q, R=%°R, H=9»°H. (36)  pare the results displayed in FiggbRand §b) we find that
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in the spatial case no instability occurs if the relative energyinvestigation a variational approach and direct numerical
imbalance R/Q) exceeds the very small value of 0.022.  computations were used. An excellent agreement between
both methods could be obtained. Studying the collision be-
V. CONCLUSION havior of the SWs we found two SWs to fuse for small
relative velocities as expected for a nonintegrable system we
In this work, we have investigated solitary waves medi-found. The new paramete8 or the energy imbalanceR
ated by the vectorial or type-ll interaction in a nonlinearintroduced by the vectorial model influences the stability of
optical medium in the presence of diffraction or dispersion.the solutions. Already a rather weak energy imbalance stabi-
We derived the basic set of equations to describe the propdizes the SWs. Unstable SWs are found in the vicinity of the
gation of both spatial and temporal SWs. Some analyticascalar mode(very small energy imbalantenly. They need
expressions to estimate the peak amplitudes of the SWs wermt decay completely but may transform into long-living os-
found. To determine the complete shape of the SWs undatillating solutions.
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